Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.924
Filtrar
1.
Immunity ; 57(4): 632-648, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38599163

RESUMEN

One of the most significant conceptual advances in immunology in recent history is the recognition that signals from the innate immune system are required for induction of adaptive immune responses. Two breakthroughs were critical in establishing this paradigm: the identification of dendritic cells (DCs) as the cellular link between innate and adaptive immunity and the discovery of pattern recognition receptors (PRRs) as a molecular link that controls innate immune activation as well as DC function. Here, we recount the key events leading to these discoveries and discuss our current understanding of how PRRs shape adaptive immune responses, both indirectly through control of DC function and directly through control of lymphocyte function. In this context, we provide a conceptual framework for how variation in the signals generated by PRR activation, in DCs or other cell types, can influence T cell differentiation and shape the ensuing adaptive immune response.


Asunto(s)
Células Dendríticas , Inmunidad Innata , Inmunidad Adaptativa , Receptores de Reconocimiento de Patrones/metabolismo , Activación de Linfocitos
2.
Mol Neurodegener ; 19(1): 38, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658964

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is the most frequent cause of dementia. Recent evidence suggests the involvement of peripheral immune cells in the disease, but the underlying mechanisms remain unclear. METHODS: We comprehensively mapped peripheral immune changes in AD patients with mild cognitive impairment (MCI) or dementia compared to controls, using cytometry by time-of-flight (CyTOF). RESULTS: We found an adaptive immune signature in AD, and specifically highlight the accumulation of PD1+ CD57+ CD8+ T effector memory cells re-expressing CD45RA in the MCI stage of AD. In addition, several innate and adaptive immune cell subsets correlated to cerebrospinal fluid (CSF) biomarkers of AD neuropathology and measures for cognitive decline. Intriguingly, subsets of memory T and B cells were negatively associated with CSF biomarkers for tau pathology, neurodegeneration and neuroinflammation in AD patients. Lastly, we established the influence of the APOE ε4 allele on peripheral immunity. CONCLUSIONS: Our findings illustrate significant peripheral immune alterations associated with both early and late clinical stages of AD, emphasizing the necessity for further investigation into how these changes influence underlying brain pathology.


Asunto(s)
Inmunidad Adaptativa , Enfermedad de Alzheimer , Disfunción Cognitiva , Progresión de la Enfermedad , Humanos , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/líquido cefalorraquídeo , Anciano , Masculino , Disfunción Cognitiva/inmunología , Femenino , Inmunidad Adaptativa/inmunología , Biomarcadores/líquido cefalorraquídeo , Anciano de 80 o más Años , Persona de Mediana Edad
3.
Front Immunol ; 15: 1348836, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646523

RESUMEN

Dabie Banda virus (DBV), a tick-borne pathogen, was first identified in China in 2009 and causes profound symptoms including fever, leukopenia, thrombocytopenia and multi-organ dysfunction, which is known as severe fever with thrombocytopenia syndrome (SFTS). In the last decade, global incidence and mortality of SFTS increased significantly, especially in East Asia. Though previous studies provide understandings of clinical and immunological characteristics of SFTS development, comprehensive insight of antiviral immunity response is still lacking. Here, we intensively discuss the antiviral immune response after DBV infection by integrating previous ex- and in-vivo studies, including innate and adaptive immune responses, anti-viral immune responses and long-term immune characters. A comprehensive overview of potential immune targets for clinical trials is provided as well. However, development of novel strategies for improving the prognosis of the disease remains on challenge. The current review may shed light on the establishment of immunological interventions for the critical disease SFTS.


Asunto(s)
Phlebovirus , Síndrome de Trombocitopenia Febril Grave , Humanos , Síndrome de Trombocitopenia Febril Grave/inmunología , Síndrome de Trombocitopenia Febril Grave/terapia , Phlebovirus/inmunología , Animales , Inmunidad Innata , Inmunidad Adaptativa , Antivirales/uso terapéutico
4.
Genes Immun ; 25(2): 158-167, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38570727

RESUMEN

In this study, antibody response and a single-cell RNA-seq analysis were conducted on peripheral blood mononuclear cells from five different groups: naïve subjects vaccinated with AZD1222 (AZ) or Ad5-nCoV (Cso), individuals previously infected and later vaccinated (hybrid) with AZD1222 (AZ-hb) or Ad5-nCoV (Cso-hb), and those who were infected and had recovered from COVID-19 (Inf). The results showed that AZ induced more robust neutralizing antibody responses than Cso. The single-cell RNA data revealed a high frequency of memory B cells in the Cso and Cso-hb. In contrast, AZ and AZ-hb groups exhibited the highest proportion of activated naïve B cells expressing CXCR4. Transcriptomic analysis of CD4+ and CD8+ T cells demonstrated a heterogeneous response following vaccination, hybrid immunity, or natural infection. However, a single dose of Ad5-nCoV was sufficient to strongly activate CD4+ T cells (naïve and memory) expressing ANX1 and FOS, similar to the hybrid response observed with AZ. An interesting finding was the robust activation of a subset of CD8+ T cells expressing GZMB, GZMH, and IFNG genes in the Cso-hb group. Our findings suggest that both vaccines effectively stimulated the cellular immune response; however, the Ad5-nCoV induced a more robust CD8+ T-cell response in previously infected individuals.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Linfocitos T CD8-positivos , Adenoviridae/genética , ChAdOx1 nCoV-19 , Leucocitos Mononucleares , Perfilación de la Expresión Génica , Inmunidad Adaptativa , Anticuerpos Neutralizantes/genética , Anticuerpos Antivirales/genética
5.
Semin Cell Dev Biol ; 161-162: 42-53, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38608498

RESUMEN

Mitochondria play a multitude of essential roles within mammalian cells, and understanding how they control immunity is an emerging area of study. Lymphocytes, as integral cellular components of the adaptive immune system, rely on mitochondria for their function, and mitochondria can dynamically instruct their differentiation and activation by undergoing rapid and profound remodelling. Energy homeostasis and ATP production are often considered the primary functions of mitochondria in immune cells; however, their importance extends across a spectrum of other molecular processes, including regulation of redox balance, signalling pathways, and biosynthesis. In this review, we explore the dynamic landscape of mitochondrial homeostasis in T and B cells, and discuss how mitochondrial disorders compromise adaptive immunity.


Asunto(s)
Linfocitos , Mitocondrias , Animales , Mitocondrias/metabolismo , Linfocitos/metabolismo , Inmunidad Adaptativa , Transducción de Señal , Homeostasis , Mamíferos
6.
Transpl Int ; 37: 12330, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38567143

RESUMEN

Immune cell metabolism plays a pivotal role in shaping and modulating immune responses. The metabolic state of immune cells influences their development, activation, differentiation, and overall function, impacting both innate and adaptive immunity. While glycolysis is crucial for activation and effector function of CD8 T cells, regulatory T cells mainly use oxidative phosphorylation and fatty acid oxidation, highlighting how different metabolic programs shape immune cells. Modification of cell metabolism may provide new therapeutic approaches to prevent rejection and avoid immunosuppressive toxicities. In particular, the distinct metabolic patterns of effector and suppressive cell subsets offer promising opportunities to target metabolic pathways that influence immune responses and graft outcomes. Herein, we review the main metabolic pathways used by immune cells, the techniques available to assay immune metabolism, and evidence supporting the possibility of shifting the immune response towards a tolerogenic profile by modifying energetic metabolism.


Asunto(s)
Glucólisis , Linfocitos T Reguladores , Humanos , Diferenciación Celular , Inmunidad Adaptativa
7.
Nat Commun ; 15(1): 2846, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565530

RESUMEN

Hybrid immunity, acquired through vaccination followed or preceded by a COVID-19 infection, elicits robust antibody augmentation. We hypothesize that maternal hybrid immunity will provide greater infant protection than other forms of COVID-19 immunity in the first 6 months of life. We conducted a case-control study in Israel, enrolling 661 infants up to 6 months of age, hospitalized with COVID-19 (cases) and 59,460 age-matched non-hospitalized infants (controls) between August 24, 2021, and March 15, 2022. Infants were grouped by maternal immunity status at delivery: Naïve (never vaccinated or tested positive, reference group), Hybrid-immunity (vaccinated and tested positive), Natural-immunity (tested positive before or during the study period), Full-vaccination (two-shot regimen plus 1 booster), and Partial-vaccination (less than full three shot regimen). Applying Cox proportional hazards models to estimate the hazard ratios, which was then converted to percent vaccine effectiveness, and using the Naïve group as the reference, maternal hybrid-immunity provided the highest protection (84% [95% CI 75-90]), followed by full-vaccination (66% [95% CI 56-74]), natural-immunity (56% [95% CI 39-68]), and partial-vaccination (29% [95% CI 15-41]). Maternal hybrid-immunity was associated with a reduced risk of infant hospitalization for Covid-19, as compared to natural-immunity, regardless of exposure timing or sequence. These findings emphasize the benefits of vaccinating previously infected individuals during pregnancy to reduce COVID-19 hospitalizations in early infancy.


Asunto(s)
COVID-19 , Lactante , Embarazo , Femenino , Humanos , Estudios de Casos y Controles , Israel/epidemiología , COVID-19/epidemiología , COVID-19/prevención & control , Vacunación , Hospitalización , Inmunidad Adaptativa
8.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 647-652, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38660881

RESUMEN

Chronic graft-versus-host disease (cGVHD) is one of a major complication that affecting the long-term survival and living quality of patients after allogeneic hematopoietic stem cell transplantation, with the incidence of 30%-70%. Unlike acute GVHD, cGVHD involves a large number of immune cells and cytokines in addition to T cell, which is activated abnormally by the donor, and cytokine storms, which characterized by infiltration of donor lymphocytes and damage to host target organ. Recent studies have further made progress in targeting related immune cells and cytokines. In this review, the pathogenesis and therapeutic prospects of cGVHD were summarized from the perspectives of classical innate and adaptive immunity.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Enfermedad Injerto contra Huésped/terapia , Humanos , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Enfermedad Crónica , Citocinas/metabolismo , Inmunidad Innata , Trasplante Homólogo , Linfocitos T/inmunología , Inmunidad Adaptativa , Síndrome de Bronquiolitis Obliterante
9.
BMC Infect Dis ; 24(1): 407, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627637

RESUMEN

BACKGROUND: Since the emergence of SARS-CoV-2 (COVID-19), there have been multiple waves of infection and multiple rounds of vaccination rollouts. Both prior infection and vaccination can prevent future infection and reduce severity of outcomes, combining to form hybrid immunity against COVID-19 at the individual and population level. Here, we explore how different combinations of hybrid immunity affect the size and severity of near-future Omicron waves. METHODS: To investigate the role of hybrid immunity, we use an agent-based model of COVID-19 transmission with waning immunity to simulate outbreaks in populations with varied past attack rates and past vaccine coverages, basing the demographics and past histories on the World Health Organization Western Pacific Region. RESULTS: We find that if the past infection immunity is high but vaccination levels are low, then the secondary outbreak with the same variant can occur within a few months after the first outbreak; meanwhile, high vaccination levels can suppress near-term outbreaks and delay the second wave. Additionally, hybrid immunity has limited impact on future COVID-19 waves with immune-escape variants. CONCLUSIONS: Enhanced understanding of the interplay between infection and vaccine exposure can aid anticipation of future epidemic activity due to current and emergent variants, including the likely impact of responsive vaccine interventions.


Asunto(s)
COVID-19 , Epidemias , Vacunas , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Vacunación , Inmunidad Adaptativa
10.
Cell Mol Life Sci ; 81(1): 185, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630271

RESUMEN

When cells proliferate, stress on DNA replication or exposure to endogenous or external insults frequently results in DNA damage. DNA-Damage Response (DDR) networks are complex signaling pathways used by multicellular organisms to prevent DNA damage. Depending on the type of broken DNA, the various pathways, Base-Excision Repair (BER), Nucleotide Excision Repair (NER), Mismatch Repair (MMR), Homologous Recombination (HR), Non-Homologous End-Joining (NHEJ), Interstrand Crosslink (ICL) repair, and other direct repair pathways, can be activated separately or in combination to repair DNA damage. To preserve homeostasis, innate and adaptive immune responses are effective defenses against endogenous mutation or invasion by external pathogens. It is interesting to note that new research keeps showing how closely DDR components and the immune system are related. DDR and immunological response are linked by immune effectors such as the cyclic GMP-AMP synthase (cGAS)-Stimulator of Interferon Genes (STING) pathway. These effectors act as sensors of DNA damage-caused immune response. Furthermore, DDR components themselves function in immune responses to trigger the generation of inflammatory cytokines in a cascade or even trigger programmed cell death. Defective DDR components are known to disrupt genomic stability and compromise immunological responses, aggravating immune imbalance and leading to serious diseases such as cancer and autoimmune disorders. This study examines the most recent developments in the interaction between DDR elements and immunological responses. The DDR network's immune modulators' dual roles may offer new perspectives on treating infectious disorders linked to DNA damage, including cancer, and on the development of target immunotherapy.


Asunto(s)
Enfermedades Autoinmunes , Neoplasias , Humanos , Inmunidad Adaptativa , Citocinas , Apoptosis , Neoplasias/genética
11.
Virulence ; 15(1): 2345019, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38656137

RESUMEN

Klebsiella pneumoniae is an important gram-negative bacterium that causes severe respiratory and healthcare-associated infections. Although antibiotic therapy is applied to treat severe infections caused by K. pneumoniae, drug-resistant isolates pose a huge challenge to clinical practices owing to adverse reactions and the mismanagement of antibiotics. Several studies have attempted to develop vaccines against K. pneumoniae, but there are no licensed vaccines available for the control of K. pneumoniae infection. In the current study, we constructed a novel DNA vaccine, pVAX1-YidR, which encodes a highly conserved virulence factor YidR and a recombinant expression plasmid pVAX1-IL-17 encoding Interleukin-17 (IL-17) as a molecular adjuvant. Adaptive immune responses were assessed in immunized mice to compare the immunogenicity of the different vaccine schemes. The results showed that the targeted antigen gene was expressed in HEK293T cells using an immunofluorescence assay. Mice immunized with pVAX1-YidR elicited a high level of antibodies, induced strong cellular immune responses, and protected mice from K. pneumoniae challenge. Notably, co-immunization with pVAX1-YidR and pVAX1-IL-17 significantly augmented host adaptive immune responses and provided better protection against K. pneumoniae infections in vaccinated mice. Our study demonstrates that combined DNA vaccines and molecular adjuvants is a promising strategy to develop efficacious antibacterial vaccines against K. pneumoniae infections.


Asunto(s)
Vacunas Bacterianas , Modelos Animales de Enfermedad , Interleucina-17 , Infecciones por Klebsiella , Klebsiella pneumoniae , Vacunas de ADN , Animales , Klebsiella pneumoniae/inmunología , Klebsiella pneumoniae/genética , Infecciones por Klebsiella/prevención & control , Infecciones por Klebsiella/inmunología , Interleucina-17/inmunología , Interleucina-17/genética , Vacunas de ADN/inmunología , Vacunas de ADN/genética , Vacunas de ADN/administración & dosificación , Ratones , Humanos , Femenino , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/genética , Vacunas Bacterianas/administración & dosificación , Células HEK293 , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/genética , Inmunización , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Factores de Virulencia/inmunología , Factores de Virulencia/genética , Inmunidad Adaptativa , Ratones Endogámicos BALB C , Adyuvantes Inmunológicos/administración & dosificación , Inmunidad Celular
12.
RMD Open ; 10(2)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38599653

RESUMEN

OBJECTIVES: To assess incidence, severity and predictors of COVID-19, including protective post-vaccination levels of antibodies to the receptor-binding domain of SARS-CoV-2 spike protein (anti-RBD), informing further vaccine strategies for patients with immune-mediated inflammatory diseases (IMIDs) on immunosuppressive medication. METHODS: IMIDs on immunosuppressives and healthy controls (HC) receiving SARS-CoV-2 vaccines were included in this prospective observational study. COVID-19 and outcome were registered and anti-RBD antibodies measured 2-5 weeks post-immunisation. RESULTS: Between 15 February 2021 and 15 February 2023, 1729 IMIDs and 350 HC provided blood samples and self-reported COVID-19. The incidence of COVID-19 was 66% in patients and 67% in HC, with re-infection occurring in 12% of patients. Severe COVID-19 was recorded in 22 (2%) patients and no HC. No COVID-19-related deaths occurred. Vaccine-induced immunity gave higher risk of COVID-19 (HR 5.89 (95% CI 4.45 to 7.80)) than hybrid immunity. Post-immunisation anti-RBD levels <6000 binding antibody units/mL were associated with an increased risk of COVID-19 following three (HR 1.37 (95% CI 1.08 to 1.74)) and four doses (HR 1.28 (95% CI 1.02 to 1.62)), and of COVID-19 re-infection (HR 4.47 (95% CI 1.87 to 10.67)). CONCLUSION: Vaccinated patients with IMID have a low risk of severe COVID-19. Hybrid immunity lowers the risk of infection. High post-immunisation anti-RBD levels protect against COVID-19. These results suggest that knowledge on COVID-19 history, and assessment of antibody levels post-immunisation can help individualise vaccination programme series in high-risk individuals. TRIAL REGISTRATION NUMBER: NCT04798625.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Vacunas , Humanos , Incidencia , Vacunas contra la COVID-19/uso terapéutico , Estudios Prospectivos , COVID-19/epidemiología , COVID-19/prevención & control , SARS-CoV-2 , Vacunación , Inmunización , Terapia de Inmunosupresión , Agentes Inmunomoduladores , Inmunidad Adaptativa
13.
Immunity ; 57(4): 613-631, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38599162

RESUMEN

While largely neglected over decades during which adaptive immunity captured most of the attention, innate immune mechanisms have now become central to our understanding of immunology. Innate immunity provides the first barrier to infection in vertebrates, and it is the sole mechanism of host defense in invertebrates and plants. Innate immunity also plays a critical role in maintaining homeostasis, shaping the microbiota, and in disease contexts such as cancer, neurodegeneration, metabolic syndromes, and aging. The emergence of the field of innate immunity has led to an expanded view of the immune system, which is no longer restricted to vertebrates and instead concerns all metazoans, plants, and even prokaryotes. The study of innate immunity has given rise to new concepts and language. Here, we review the history and definition of the core concepts of innate immunity, discussing their value and fruitfulness in the long run.


Asunto(s)
Inmunidad Innata , Memoria Inmunológica , Animales , Invertebrados , Inmunidad Adaptativa , Vertebrados
14.
Adv Exp Med Biol ; 1444: 177-193, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38467980

RESUMEN

T cells play a crucial role in adaptive immunity by recognizing and eliminating foreign pathogens and abnormal cells such as cancer cells. T cell receptor (TCR), which is expressed on the surface of T cells, recognizes and binds to specific antigens presented by major histocompatibility complex (MHC) molecules on antigen-presenting cells (APCs). This activation process leads to the proliferation and differentiation of T cells, allowing them to carry out their specific immune response functions. This chapter outlines the TCR signaling pathways that are common to different T cell subsets, as well as the recently elucidated TCR signaling pathway specific to CD8+ T cells and its role in controlling anti-Toxoplasma and anti-tumor immunity.


Asunto(s)
Neoplasias , Toxoplasma , Linfocitos T CD8-positivos , Receptores de Antígenos de Linfocitos T , Inmunidad Adaptativa , Subgrupos de Linfocitos T
15.
Front Cell Infect Microbiol ; 14: 1342913, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38469348

RESUMEN

Helicobacter pylori (H. pylori) is the predominant pathogen causing chronic gastric mucosal infections globally. During the period from 2011 to 2022, the global prevalence of H. pylori infection was estimated at 43.1%, while in China, it was slightly higher at approximately 44.2%. Persistent colonization by H. pylori can lead to gastritis, peptic ulcers, and malignancies such as mucosa-associated lymphoid tissue (MALT) lymphomas and gastric adenocarcinomas. Despite eliciting robust immune responses from the host, H. pylori thrives in the gastric mucosa by modulating host immunity, particularly by altering the functions of innate and adaptive immune cells, and dampening inflammatory responses adverse to its survival, posing challenges to clinical management. The interaction between H. pylori and host immune defenses is intricate, involving evasion of host recognition by modifying surface molecules, manipulating macrophage functionality, and modulating T cell responses to evade immune surveillance. This review analyzes the immunopathogenic and immune evasion mechanisms of H. pylori, underscoring the importance of identifying new therapeutic targets and developing effective treatment strategies, and discusses how the development of vaccines against H. pylori offers new hope for eradicating such infections.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Humanos , Helicobacter pylori/fisiología , Inmunidad Adaptativa , Mucosa Gástrica/patología , Evasión Inmune , Linfocitos T , Inmunidad Innata
16.
Cells ; 13(5)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38474403

RESUMEN

Sepsis, a critical condition marked by systemic inflammation, profoundly impacts both innate and adaptive immunity, often resulting in lymphopenia. This immune alteration can spare regulatory T cells (Tregs) but significantly affects other lymphocyte subsets, leading to diminished effector functions, altered cytokine profiles, and metabolic changes. The complexity of sepsis stems not only from its pathophysiology but also from the heterogeneity of patient responses, posing significant challenges in developing universally effective therapies. This review emphasizes the importance of phenotyping in sepsis to enhance patient-specific diagnostic and therapeutic strategies. Phenotyping immune cells, which categorizes patients based on clinical and immunological characteristics, is pivotal for tailoring treatment approaches. Flow cytometry emerges as a crucial tool in this endeavor, offering rapid, low cost and detailed analysis of immune cell populations and their functional states. Indeed, this technology facilitates the understanding of immune dysfunctions in sepsis and contributes to the identification of novel biomarkers. Our review underscores the potential of integrating flow cytometry with omics data, machine learning and clinical observations to refine sepsis management, highlighting the shift towards personalized medicine in critical care. This approach could lead to more precise interventions, improving outcomes in this heterogeneously affected patient population.


Asunto(s)
Inmunidad Adaptativa , Sepsis , Humanos , Biomarcadores , Inflamación , Medicina de Precisión/métodos
18.
Trends Immunol ; 45(4): 303-313, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38508931

RESUMEN

CD4+ T cells are crucial in generating and sustaining immune responses. They orchestrate and fine-tune mammalian innate and adaptive immunity through cell-based interactions and the release of cytokines. The role of these cells in contributing to the efficacy of antitumor immunity and immunotherapy has just started to be uncovered. Yet, many aspects of the CD4+ T cell response are still unclear, including the differentiation pathways controlling such cells during cancer progression, the external signals that program them, and how the combination of these factors direct ensuing immune responses or immune-restorative therapies. In this review, we focus on recent advances in understanding CD4+ T cell regulation during cancer progression and the importance of CD4+ T cells in immunotherapies.


Asunto(s)
Neoplasias , Linfocitos T , Animales , Humanos , Linfocitos T/patología , Inmunoterapia , Inmunidad Adaptativa , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Mamíferos
19.
Nature ; 628(8006): 162-170, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538791

RESUMEN

Ageing of the immune system is characterized by decreased lymphopoiesis and adaptive immunity, and increased inflammation and myeloid pathologies1,2. Age-related changes in populations of self-renewing haematopoietic stem cells (HSCs) are thought to underlie these phenomena3. During youth, HSCs with balanced output of lymphoid and myeloid cells (bal-HSCs) predominate over HSCs with myeloid-biased output (my-HSCs), thereby promoting the lymphopoiesis required for initiating adaptive immune responses, while limiting the production of myeloid cells, which can be pro-inflammatory4. Ageing is associated with increased proportions of my-HSCs, resulting in decreased lymphopoiesis and increased myelopoiesis3,5,6. Transfer of bal-HSCs results in abundant lymphoid and myeloid cells, a stable phenotype that is retained after secondary transfer; my-HSCs also retain their patterns of production after secondary transfer5. The origin and potential interconversion of these two subsets is still unclear. If they are separate subsets postnatally, it might be possible to reverse the ageing phenotype by eliminating my-HSCs in aged mice. Here we demonstrate that antibody-mediated depletion of my-HSCs in aged mice restores characteristic features of a more youthful immune system, including increasing common lymphocyte progenitors, naive T cells and B cells, while decreasing age-related markers of immune decline. Depletion of my-HSCs in aged mice improves primary and secondary adaptive immune responses to viral infection. These findings may have relevance to the understanding and intervention of diseases exacerbated or caused by dominance of the haematopoietic system by my-HSCs.


Asunto(s)
Inmunidad Adaptativa , Envejecimiento , Linaje de la Célula , Células Madre Hematopoyéticas , Linfocitos , Células Mieloides , Rejuvenecimiento , Animales , Femenino , Masculino , Ratones , Inmunidad Adaptativa/inmunología , Envejecimiento/inmunología , Linfocitos B/citología , Linfocitos B/inmunología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/inmunología , Inflamación/inmunología , Inflamación/patología , Linfocitos/citología , Linfocitos/inmunología , Linfopoyesis , Células Mieloides/citología , Células Mieloides/inmunología , Mielopoyesis , Fenotipo , Linfocitos T/citología , Linfocitos T/inmunología , Virus/inmunología
20.
Microbiol Spectr ; 12(4): e0376223, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38465979

RESUMEN

The emergence and re-emergence of abundant viruses from bats that impact human and animal health have resulted in a resurgence of interest in bat immunology. Characterizing the immune receptor repertoire is critical to understanding how bats coexist with viruses in the absence of disease and developing new therapeutics to target viruses in humans and susceptible livestock. In this study, IGH germline genes of Chiroptera including Rhinolophus ferrumequinum, Phyllostomus discolor, and Pipistrellus pipistrellus were annotated, and we profiled the characteristics of Rhinolophus affinis (RA) IGH CDR3 repertoire. The germline genes of Chiroptera are quite different from those of human, mouse, cow, and dog in evolution, but the three bat species have high homology. The CDR3 repertoire of RA is unique in many aspects including CDR3 subclass, V/J genes access and pairing, CDR3 clones, and somatic high-frequency mutation compared with that of human and mouse, which is an important point in understanding the asymptomatic nature of viral infection in bats. This study unveiled a detailed map of bat IGH germline genes on chromosome level and provided the first immune receptor repertoire of bat, which will stimulate new avenues of research that are directly relevant to human health and disease.IMPORTANCEThe intricate relationship between bats and viruses has been a subject of study since the mid-20th century, with more than 100 viruses identified, including those affecting humans. While preliminary investigations have outlined the innate immune responses of bats, the role of adaptive immunity remains unclear. This study presents a pioneering contribution to bat immunology by unveiling, for the first time, a detailed map of bat IGH germline genes at the chromosome level. This breakthrough not only provides a foundation for B cell receptor research in bats but also contributes to primer design and sequencing of the CDR3 repertoire. Additionally, we offer the first comprehensive immune receptor repertoire of bats, serving as a crucial library for future comparative analyses. In summary, this research significantly advances the understanding of bats' immune responses, providing essential resources for further investigations into viral tolerance and potential zoonotic threats.


Asunto(s)
Quirópteros , Virosis , Virus , Animales , Humanos , Perros , Ratones , Virosis/veterinaria , Inmunidad Adaptativa , Células Germinativas , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...